Contrôle continu - Compléments mathématiques. Durée 1h30.

Exercice 1. Résoudre le problème de Cauchy pour l'équation suivante :

$$(E_1)$$
 $3y^2y' + 2(1-y^3)x = 0$ avec $y(0) = -1$.

Exercice 2.

1. Résoudre dans $\mathbb R$ les équations différentielles

$$(E'_2)$$
 $y'' - 6y' + 9y = 9x^2$ et (E''_2) $y'' - 6y' + 9y = 2e^{3x}$

2. En déduire les solutions de

$$(E_2) y'' - 6y' + 9y = 9x^2 + 2e^{3x}$$

avec les conditions y(0) = y'(0) = 0.

Exercice 3. Soit $f: \mathbb{R} \setminus \{1\} \to \mathbb{R}$ la fonction définie par

$$f(x) = \frac{x+1}{x^3 - 1}.$$

1. Montrer que pour tout $x \in \mathbb{R} \setminus \{1\}$, f(x) peut se mettre sous la forme :

$$f(x) = \frac{a}{x-1} + \frac{bx+c}{x^2+x+1},$$

où $a,\,b,\,c$ sont des constantes que vous déterminerez.

- 2. Déterminer la forme générale des primitives de f sur $]1; +\infty[$ et sur $]-\infty; 1[$.
- 3. On considère l'équation différentielle

$$(E_3) (x^3 - 1)y' - 3(x+1)y + 2 = 0.$$

(a) En utilisant les questions précédentes déterminer la forme générale des solutions de l'équation

$$(E_3')$$
 $(x^3 - 1)z' - 3(x + 1)z = 0$

sur $]1; +\infty[$ ou sur $]-\infty; 1[$.

(b) En déduire la solution de (E_3) satisfaisant la condition initiale y(2) = 0.