TD de Géométrie.

Exercice 1.

- 1. Dans l'espace affine \mathbb{R}^3 , former une équation cartésienne du plan \mathcal{P} passant par $M_0(3,-1,4)$ et dirigé par \overrightarrow{u} le vecteur de coordonnées (1,3,-1) et \overrightarrow{v} le vecteur de coordonnées (-1,2,2)
- 2. Dans l'espace affine \mathbb{R}^3 , former une équation cartésienne de la droite D passant par $M_0(2,-1,3)$ et dirigé par \overrightarrow{u} le vecteur de coordonnées (1,3,-2).
- 3. Trouver un point A et un vecteur directeur \overrightarrow{u} de la droite affine $\mathcal{D}\left\{\begin{array}{ll} 2x-y+3z-1&=&0\\ x+y-4z-6&=&0 \end{array}\right.$

Exercice 2.

Dans l'espace affine \mathbb{R}^3 , donner une condition nécéssaire et suffisante pour que les droites \mathcal{D} $\begin{cases} x = az - 1 \\ y = 2z + 3 \end{cases}$ et \mathcal{D}' $\begin{cases} x = z - 2 \\ y = 3z - 1 \end{cases}$ soient coplanaires.

Exercice 3.

Dans l'espace affine \mathbb{R}^3 , déterminer $\mathcal{D} \cap \mathcal{D}'$ sachant que \mathcal{D} passe par A et est dirigé par \overrightarrow{u} et \mathcal{D}' passe par A' et est dirigée par \overrightarrow{u}' dans les deux exemples suivants :

- 1. A(2,1,0), $\overrightarrow{u}(1,-1,2)$, A'(0,2,1), $\overrightarrow{u}(2,-1,1)$
- 2. A(2,0,1), $\overrightarrow{u}(1,-1,2)$, A'(-1,1,1), $\overrightarrow{u}(2,-1,1)$

Exercice 4.

Dans l'espace affine \mathbb{R}^3 , montrer que les deux droites $\mathcal{D}\left\{\begin{array}{lll} x=2z+1\\ y=z-1 \end{array}\right.$, $\mathcal{D}'\left\{\begin{array}{lll} x=z+2\\ y=3z-3 \end{array}\right.$ sont coplanaires et former une équation cartésienne de leur plan.

Exercice 5.

Dans l'espace affine \mathbb{R}^3 , soient \mathcal{D} $\begin{cases} x = z - 1 \\ y = 2z + 1 \end{cases}$, \mathcal{D}' $\begin{cases} y = 3x \\ z = 1 \end{cases}$ montrer qu'il existe un couple unique de plans $(\mathcal{P}, \mathcal{P}')$ tel que $\mathcal{D} \subset \mathcal{P}, \mathcal{D}' \subset \mathcal{P}', \mathcal{P}$ et \mathcal{P}' parallèles, et former des équations cartésiennes de \mathcal{P} et \mathcal{P}' .

Exercice 6.

Dans l'espace affine \mathbb{R}^3 , soient \mathcal{D} $\begin{cases} y = x+2 \\ z = x. \end{cases}$, \mathcal{D}' $\begin{cases} y = 2x+1 \\ z = 2x-1 \end{cases}$, trouver toutes les droites Δ de l'espace parallèles au plan d'équation cartésienne z = 0 et intersectant \mathcal{D} , \mathcal{D}' et la droite d'équation cartésienne z = 0 et intersectant z =

Exercice 7.

Dans l'espace affine \mathbb{R}^3 , déterminer toutes les droites Δ de l'espace rencontrant les droites

$$\mathcal{D}\left\{\begin{array}{cccc} z & = & -1 \\ y & = & 2x+1 \end{array}\right., \, \mathcal{D}'\left\{\begin{array}{cccc} z & = & 0 \\ y & = & -x+3 \end{array}\right., \, \mathcal{D}''\left\{\begin{array}{cccc} z & = & 2 \\ y & = & x+2 \end{array}\right.$$

et parallèle au plan \mathcal{P} d'équation cartésienne x + y - z + 2 = 0.

Exercice 8.

Dans l'espace affine \mathbb{R}^3 , on considère les points A de coordonnées (1,0,-2) et B de coordonnées (0,1,1). On note aussi \overrightarrow{u} le vecteur de coordonnées (1,-1,1). On note \mathcal{D} la droite passant par A dirigé par \overrightarrow{u} .

- 1. Donner l'équation cartésienne du plan contenant \mathcal{D} et B
- 2. Donner des équations cartésiennes de la droite \mathcal{D} .
- 3. Donner de manière générale, l'équation cartésienne d'un plan \mathcal{P} contenant \mathcal{D} .

Exercice 9. (Théorème de Pappus)

Soient \mathcal{D} et \mathcal{D}' deux droites distinctes du plan affine \mathbb{R}^2 . Soient A, B, C trois points de \mathcal{D} et A', B', C' trois points de \mathcal{D}' , tous deux à deux distincts. On note $(AB') \cap (A'B) = C$ ", $(BC') \cap (B'C) = A$ ", $(AC') \cap (A'C) = B$ " (on suppose que les droites et les points envisagés existent). Montrer que A", B" et C" sont alignés.

Exercice 10.

Dans l'espace affine \mathbb{R}^3 , soient A, B, C, D quatre points non coplanaires M, N, P, Q des points pris respectivement sur les droites (AB), (BC), (CD), (DA). Montrer que M, N, P, Q sont coplanaires si et seulement si :

$$\frac{\overline{MA}}{\overline{MB}} \cdot \frac{\overline{NB}}{\overline{NC}} \cdot \frac{\overline{PC}}{\overline{PD}} \cdot \frac{\overline{QD}}{\overline{QA}} = 1$$

Exercice 11.

Dans l'espace affine \mathbb{R}^3 , soient $\mathcal{D}, \mathcal{D}', \mathcal{D}$ " trois droites concourant en un point $O, \mathcal{P}, \mathcal{P}', \mathcal{P}$ " trois plans paralleles, \mathcal{P} et \mathcal{P}' n'étant pas symétriques par rapport à O, on note :

A, B, C les points d'intersections respectifs de \mathcal{P} avec $\mathcal{D}, \mathcal{D}', \mathcal{D}$ ",

A', B', C' les points d'intersections respectifs de \mathcal{P}' avec $\mathcal{D}, \mathcal{D}', \mathcal{D}$ ",

A", B", C" les points d'intersections respectifs de \mathcal{P} " avec \mathcal{D} , \mathcal{D}' , \mathcal{D} ",

et $(BC') \cap (B'C) = L$, $(CA') \cap (C'A) = M$, $(AB') \cap (A'B) = N$. Montrer que les droites (LA"), (MB"), (NC") sont concourantes ou parallèles.

Exercice 12.

Soient A_1 , A_2 , A_3 , A_4 , quatre points non coplanaires, et M un point de l'espace affine \mathbb{R}^3 , On suppose que les plans (MA_1A_2) (resp. (MA_2A_3) , resp. (MA_3A_4) , resp. (MA_4A_1)) rencontre la droite (A_3A_4) (resp. (A_4A_1) , resp. (A_1A_2) , resp. (A_2A_3)) en un point B_1 (resp. B_2 , resp. B_3 , resp. B_4). Montrer que B_1 , B_2 , B_3 , B_4 sont coplanaires.

Exercice 13.

Dans l'espace affine \mathbb{R}^3 , soient A, B, C, A', B', C' six points tels qu'il existe $\overrightarrow{u} \neq \overrightarrow{0}$ et $\alpha, \beta, \gamma \in \mathbb{R} \setminus \{0\}$ tels que :

$$\left\{ \begin{array}{c} A,B,C \text{ ne sont pas alignés} \\ \overrightarrow{u} \text{ n'appartient pas à la direction du plan } (ABC) \\ \overrightarrow{AA'} = \alpha \overrightarrow{u}, \overrightarrow{BB'} = \beta \overrightarrow{u}, \overrightarrow{CC'} = \gamma \overrightarrow{u}. \end{array} \right.$$

Montrer qu'il existe une droite parallèle aux trois plans (A'BC), (AB'C), (ABC') si et seulement si :

$$\frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma} = 0.$$